

KING ABDULAZIZ UNIVERSITY Academic Assessment Unit

COURSE PORTFOLIO

FACULTY OF SCIENCE

PHYSICS DEPARTMENT

COURSE NAME: Solid State Physics

COURSE NUMBER: Phys 471

SEMESTER/YEAR: $2^{nd} / 1436 \mathcal{H}$

DATE: Rabia Althani -1437 H

Instructor Information

- X Name of the instructor: Dr. Hala A Al-Jawhari
- Solution: Faculty of Science, 3rd floor, Room No. (108).

✗ Office hours:

Sunday	Monday	Tuesday	Wednesday	Thursdays
10-11, 12-1	-	10-11, 12-1	-	10-11, 11-2

Contact number(s): Tel : 6400000 Ext. 26904

🖉 E-mail address: haljawhari@kau.edu.sa

Course Information

Course name and number: Solid State Physics - Phys (471)

✗ Course meeting times & places:

	Time	Room
Lectures	9-10 Sun, Tus & Thru.	104A

X Course prerequisites and requirements: Quantum Mechanics Phys (354)

Z Description of the course :

This course is an introduction to the: crystal structures, properties of periodic lattices, electrons in metals, band structure, transport properties, semiconductors, and superconductivity.

Course Objectives

By the end of this course student must be able to:

- Define the lattice planes & directions.
- Establish a reciprocal lattice from a real lattice.
- Determine *the structure factor* for all cubic lattices.
- Define phonons in crystals and distinguish between their different modes.
- Choose the right formulas to calculate *specific heat* of the lattice.
- Recognize the main drawbacks of the *free electron model* in metals.
- Identify: Bloch's theorem, Brillouin zones & Fermi surface in metals.
- Classify different types of solid according to *The Band Theory*.
- Recognize the main factors affect *the conductivity in metals*.
- Distinguish between *intrinsic & extrinsic Semiconductors* and know their properties and applications.
- Recognize the idea behind the Superconductivity phenomenon and be aware of its applications.

Learning Resources

The primary textbook for the course is
 1- Elementary Solid State Physics by M. Ali Omar, 1997.

Additional references that may be helpful to students in this course:

- 2- Solid State Physics, by J. Hook & H. Hall, 2nd ed (2010).
- 3- *Materials Science & Engineering*, by W. Callister & D. Rethwisch, 8th ed (2011).
- 4- The Physics of Solid, by R. Turton, (2000).
- 5- Introduction to Solid State Physics, by C. Kittel, 6th ed.
- 6- http://www.doitpoms.ac.uk/tlplib/index.php
- 7- <u>http://ocw.mit.edu/courses/materials-science-and-engineering/3-091sc-introduction-to-solid-state-chemistry-fall-2010/index.htm</u>

Course Requirements and Grading

✗ Student assessment:

H.W	10%	-
Quiz	10%	The 2 nd lecture of each week
1 st EXAM	20%	21-5-1437 Н
2 nd EXAM	20%	5-7-1437 H
Final Exam	40%	After week 14

Expectations from students:

- Students are expected to attend lectures and labs on time.
- Students may discuss a homework assignment to clarify what is required. However, students may NOT share or copy each other work.
- Students are expected to prepare them self for each exam or quiz, and bring their own pens and calculator.

✓ Student responsibilities to the course:

The student responsibilities are to:

- Attend all lectures and labs, since the absence of 25% of the total lectures will prevent the student from attending the final exam.
- Perform all lab experiments and submit their required reports.
- Submit each problem set on its defined date. .
- Work hard on each given exam or quiz. **Eight** quizzes will be given, but only the best **five** of them will be encountered.

Detailed Course Schedule

	Topic	Reading s	Due
1	STRUCTURE & BONDING Periodic Structures & main definitions.	Ch 1, Sec 1-3	
(14/4/37)	Crystal Planes & directions	Ch 1, Sec 4-6	+ <i>Ch 3</i> -Ref(3)

ACADEMIC ASSESSMENT UNIT

	Common Structures 1	Ch 1, Sec 7	
	Common Structures 2	Ch 1, Sec 7	i
2	Interatomic Forces	Ch 1, Sec 9	
2	Types of Bonding	Ch 1, Sec 10	
	DIFFRACTION IN CRYSTALS		
-	X-Ray (Nature & Generation) &Bragg's Law.	Ch 2, Sec 1-4	
3	Diffraction by a Crystal	Ch 2, Sec 5	1
	Reciprocal Lattice & Diffraction	Ch 2, Sec 6-7	
	The structure factor.	Ch 2, Sec 9-11	
4	Neutron and Electron Diffraction.	Ch 2, Sec 12	
	Tutorial session 1		Problem set (1)
	ACCOUSTIC PROPERTIES OF SOLIDS	Ch 3, Sec 1-2	
5	The Continuum Model(1D) & Discrete Lattice	& 6	
3	Dispersion Relation for a 2D Lattice & Phonons	Ch 3, Sec 5-6	
	Density of States for a 1D &3D Lattice	Ch 3, Sec 3,7	
	*** 1 st EXAM *** 21-5	-1437	
	Specific Heat	Ch 3, Sec 4,8	
	Specific Heat & Thermal Conductivity	Ch 3, Sec 4,8 &9	
6	THE FREE ELECTRON MODEL	Ch 4, Sec 1-4	
	Drude Model of metals	Cn 4, Sec 1-4	
	Electrical conductivity vs temperature	Ch 4, Sec 5	
7	The Quantum Model & the Fermi Sphere	Ch 4, Sec 6-8	
1	Thermal conductivity & Hall Effect	Ch 4, Sec 9-10	
	Mid Term Holiday		
	Tutorial session 2		Problem set (2)
8	BAND THEORY OF SOLIDS	Ch 5, Sec 1-3	
(11/6/37)	Formation of Energy Bands: Bloch Theorem		
	The crystal potential	Ch 5, Sec 5	
	No. of states in a band	Ch 5, Sec 5	
9	The Nearly Free Electron Model	Ch 5, Sec 6-7	
	Metals, Insulators, & Semiconductors- DOS	Ch 5, Sec 10 -11	
	*** 2 nd EXAM *** 5-7-	1437	
	Fermi surface & velocity	Ch 5, Sec 12-13	
10	The electron effective mass	Ch 5, Sec 14-16	
10	The Hole, Electrical conductivity & Hall Effect	Ch 5, Sec 17-19	1
	SEMICONDUCTORS	Ch 6, Sec 1-4	
11	Intrinsic semiconductors	Ch 0, Sec 1-4	
	Doped semiconductors	Ch 6, Sec 5-6	
	Cont.	Ì	[
	Mobility & The Semiconductor Hall Effect	Ch 6, Sec 7-8	
10	The hot electrons & Gunn Effect	Ch 6, Sec 10-11	
12		Ch 6, Sec 12	ii
14	Optical Absorption	Cn 0, Sec 12	

ACADEMIC ASSESSMENT UNIT SUPERCONDUCTIVITY Types I &II Superconductors & The BCS Theory given Handout High Tc Superconductors & their applications given Handout *** FINAL EXAM